The Fourth Industrial Revolution
The First Industrial Revolution used water and steam power to mechanize production. The Second used electric power to create mass production. The Third used electronics and information technology to automate production. Now a Fourth Industrial Revolution is building on the Third, the digital revolution that has been occurring since the middle of the last century. It is characterized by a fusion of technologies that is blurring the lines between the physical, digital, and biological spheres.
There are three reasons why today’s transformations represent not merely a prolongation of the Third Industrial Revolution but rather the arrival of a Fourth and distinct one: velocity, scope, and systems impact. The speed of current breakthroughs has no historical precedent. When compared with previous industrial revolutions, the Fourth is evolving at an exponential rather than a linear pace. Moreover, it is disrupting almost every industry in every country. And the breadth and depth of these changes herald the transformation of entire systems of production, management, and governance.
The possibilities of billions of people connected by mobile devices, with unprecedented processing power, storage capacity, and access to knowledge, are unlimited. And these possibilities will be multiplied by emerging technology breakthroughs in fields such as artificial intelligence, robotics, the Internet of Things, autonomous vehicles, 3-D printing, nanotechnology, biotechnology, materials science, energy storage, and quantum computing.
Factories of The Future
The ultimate goal of the factory of the future is to interconnect every step of the manufacturing process. Factories are organizing an unprecedented technical integration of systems across domains, hierarchy, geographic boundaries, value chains and life cycle phases. This integration will only be a success if the technology is supported by global consensus-based standards. Internet of Things (IoT) standards in particular will facilitate industrial automation, and many initiatives (too many to list here) in the IoT standardisation arena are currently under way. To keep up with the rapid pace of advancing technology, manufacturers will also need to invest in both digital technologies and highly skilled technical talent to reap the benefits offered by the fast-paced factories. Worker safety and
data security are other important matters needing constantly to be addressed.
Internet of Things
The Internet of Things is a network of physical objects – vehicles, machines, home appliances, and more – that use sensors and APIs to connect and exchange data over the Internet. Cloud-based IoT platforms and architecture connect the real and virtual worlds. They help companies manage IoT device connectivity and security – as well as collect device data, link devices to backend systems, ensure IoT interoperability, and build and run IoT applications.
The Industrial Internet of Things (IIoT) is the use of Internet of Things (IoT) technologies in manufacturing.
Also known as the Industrial Internet, IIoT incorporates machine learning and big data technology, harnessing the sensor data, machine-to-machine (M2M) communication and automation technologies that have existed in industrial settings for years. The driving philosophy behind the IIoT is that smart machines are better than humans at accurately, consistently capturing and communicating data. This data can enable companies to pick up on inefficiencies and problems sooner, saving time and money and supporting business intelligence efforts. In manufacturing specifically, IIoT holds great potential for quality control, sustainable and green practices, supply chain traceability and overall supply chain efficiency.